Project Plan Presentation
Optimizing Electric Motors Using ML

The Capstone Experience
Team Anthropocene Institute

Paulina Bies
Jacob Stacy
Connor Horton
Jared Singh Sekhon
Cedric Emmanuel

Department of Computer Science and Engineering
Michigan State University
Spring 2024
Project Sponsor Overview

• Firm based in Palo Alto, exploring solutions for Climate Change
• Connecting investors, policy makers and researchers
• Assess research project claims, maturity and viability
Project Functional Specifications

• Motors are one of the most widely used electronic products
• Reducing the environmental impact of motors
• ML model to find optimal motor design
• Model is tied to web app for ease of use
Project Design Specifications

• Interactive Web application for project managers, engineers, and researchers
• Allows users to create a parameterized electric motor based on user input
• Outlines materials used for each motor component
• Provides an efficiency, carbon emission, and performance analysis
Screen Mockup: Homepage
Screen Mockup: Motor Parameter Page
Screen Mockup: Materials Page

Winding

Aluminum

Description: Aluminium forms one stable oxide with the chemical formula Al2O3, commonly called alumina. It can be found in nature in the mineral corundum, α-alumina; there is also a γ-alumina phase.

Inquiry: https://ye-fong.com/

Rotor

Steel

Description: All steel alloys are primarily iron and 0.002–2.1% carbon by weight. In this range, carbon bonds with iron to create a strong molecular structure.

Inquiry: https://ye-fong.com/
Screen Mockup: Performance Analysis

Specifications and Performance

- **Peak Torque:** 498 oz-in (3.5 N-m)
- **Continuous Torque:** 116 oz-in (0.8 N-m)
- **Peak Power:** 920 W (1.23 hp)
- **Continuous Power:** 390 W (0.52 hp)
- **Maximum Speed:** 4850 RPM
- **Peak Efficiency:** 95%

- **Mass:** 1.3 lb
- **Rotor Inertia:** 0.4 oz-in² (0.1 kg-cm²)
- **Maximum Radial Load:** 25 lbf (111.2 N)
- **Maximum Thrust Load:** 5.0 lbf (22.2 N)
- **Ambient Temperature:** 1-40° to +70° C
- **Ambient Humidity:** 0-95%; non-condensing
Project Technical Specifications

- Flask Website
- Python (PyTorch, Sklearn, Pandas)
- Docker
- HTML, Javascript and CSS with Sass preprocessor
Project System Architecture
Project System Components

• Hardware Platforms
 ▪ Google Cloud
 ▪ Virtual Ubuntu Based Server

• Software Platforms / Technologies
 ▪ Flask – Python Based Web Framework
 ▪ Docker – OS virtualization and containerizing
 ▪ PyTorch – ML Model creation, training and testing
 ▪ ScikitLearn – Prepare test and train data
Project Risks

• Risk 1
 ▪ Figuring out what ML architecture to use
 ▪ Test out different configurations on data

• Risk 2
 ▪ Defining motor quality
 ▪ Speaking to sponsor about needs and use-case

• Risk 3
 ▪ Limited access to motor databases
 ▪ Contacting sponsors and requesting data
Questions?