Beta Presentation
DeepOven: Volume and Quantity Estimation in Cooking

The Capstone Experience
Team Whirlpool
Luke Kelly
Ryan Le
Heng (Andy) Liang
Karl Ma
Emily Rose

Department of Computer Science and Engineering
Michigan State University
Fall 2023
Project Overview

- Whirlpool is creating a smart oven to make cooking easier and more enjoyable for customers
- Livestream view of the cavity from the Whirlpool mobile app
- Food recognition
- Doneness detection
- Initial cook time estimation
- DeepOven is a proof of concept that initial cook time can be estimated
- Software can detect food volume, quantity, and rack level using a camera inside the oven cavity.
- **Visualization of the food volume, quantity, and rack level will be displayed through the web for the Whirlpool development team**
System Architecture
Home Page

DeepOven: Volume and Quantity Estimation in Cooking
Estimation Page

DeepOven: Volume and Food Density Estimation in Cooking

Volume Estimation
Result: Still processing... cm³

Food Count
Result: 1 Food Objects Found

Rack Level Detection
Result: Detected at Rack Level 2

Pizza
Data Analytics Page

Confusion Matrices of Rack Level Detection Model

<table>
<thead>
<tr>
<th>Entry</th>
<th>Volume</th>
<th>Rack Level</th>
<th>Rack Conf</th>
<th>Food Count</th>
<th>Segmentation Conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/9/2023 14:32</td>
<td>10</td>
<td>2</td>
<td>97.13</td>
<td>59</td>
<td>93.3</td>
</tr>
<tr>
<td>11/9/2023 14:39</td>
<td>10</td>
<td>4</td>
<td>85.18</td>
<td>54</td>
<td>93.07</td>
</tr>
<tr>
<td>11/9/2023 14:51</td>
<td>10</td>
<td>N/A</td>
<td>93.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11/9/2023 14:57</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>96.53</td>
</tr>
<tr>
<td>11/9/2023 15:41</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>1</td>
<td>96.56</td>
</tr>
<tr>
<td>11/9/2023 16:48</td>
<td>10</td>
<td>4</td>
<td>100</td>
<td>11</td>
<td>91.61</td>
</tr>
<tr>
<td>11/11/2023 22:31</td>
<td>10</td>
<td>4</td>
<td>98.7</td>
<td>63</td>
<td>92.7</td>
</tr>
<tr>
<td>11/11/2023 22:49</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>20</td>
<td>97.06</td>
</tr>
<tr>
<td>11/11/2023 23:52</td>
<td>10</td>
<td>4</td>
<td>98.93</td>
<td>55</td>
<td>96.15</td>
</tr>
<tr>
<td>11/12/2023 9:15</td>
<td>10</td>
<td>5</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **How it works**:
- **Upload File**:
- **Set segmentation model**
Run History Graphs
What’s left to do?

- Features
- Stretch Goals
 - Put together images of food to further test our models
 - Display model performance on another page
 - Stream “oven” video to multiple computers at once
- Other Tasks
 - Measure real food volume to test against the volume model
 - Update the “How it works” page
 - Improve the volume estimation accuracy
 - Finish setting up Docker
Questions?