DeepOven: Volume and Quantity Estimation in Cooking

The Capstone Experience

Team Whirlpool

Luke Kelly
Ryan Le
Heng (Andy) Liang
Karl Ma
Emily Rose

Department of Computer Science and Engineering
Michigan State University
Fall 2023
Project Overview

• Whirlpool is creating a smart oven to make cooking easier and more enjoyable for customers
 • Livestream view of the cavity from the Whirlpool mobile app
 • Food recognition
 • Doneness detection
 • Initial cook time estimation
• DeepOven is a proof of concept that initial cook time can be estimated
• Software can detect food volume, quantity, and rack level using a camera inside the oven cavity.
• These variables will be used in conjunction with Whirlpool’s existing algorithms to calculate an initial cook time estimation
• Visualization of the food volume, quantity, and rack level will be displayed through the web for the Whirlpool development team
System Architecture

Frontend
- React
- JavaScript

Backend
- Flask
- PyTorch
- ML Model
- Python

Node

The Capstone Experience
Team Whirlpool Alpha Presentation 3
Home Screen

DeepOven: Volume and Quantity Estimation in Cooking
Calculation Results Screen

DeepOven: Volume and Quantity Estimation in Cooking

- Volume Estimation
 Result: 35 cm³

- Food Count
 Result: 1 Food Object Found

- Rack Level Detection
 Result: Detected at Rack Level 2
YOLOv8 Quantity Detection
3D Point Cloud Rendering
What’s left to do?

• Create 3D point cloud meshes of food to train the 3D reconstruction model
• Annotate more images of the oven cavity to train our YOLOv8 quantity detection model to be more accurate
• Provide more training data for the rack level detection CNN model to improve accuracy
Questions?