Project Plan Presentation
LiDAR and Stereo Image Fusion for Autonomous Navigation
The Capstone Experience
Team Lockheed Martin Space

Matt Anikiej
Carlo Barths
Michael Dittman
Nathaniel Ferry
Dom Mazza

Department of Computer Science and Engineering
Michigan State University
Fall 2022
Project Sponsor Overview

- Lockheed Martin is a Fortune 500 company employing over 100,000 people at over 60 locations
- Vast departments in Space, Aeronautics, Missile and Fire Control, and Rotary and Mission Systems
- Lockheed Martin Space advances vital technologies for future and current space endeavors
Project Functional Specifications

• Sense and communicate information about the surrounding lunar environment
• Facilitate messaging between IoT devices on the lunar surface
• Fuse together pointclouds and stereo-image data for accurate depth estimation and object detection on an embedded system
Screen Mockup: Pointclouds
Screen Mockup: Stereo-Disparity Mapping
Screen Mockup: Fusion Flowchart

Stereo Disparity Map → Disparity Map to Point Cloud → Point Cloud Data Format Unification → Averaging Values Between Point Clouds → Fused Point Cloud

LiDAR Point Cloud → Disparity Map to Point Cloud → Point Cloud Data Format Unification → Averaging Values Between Point Clouds → Fused Point Cloud
Screen Mockup: 3D YOLO Bounding Boxes
Project Technical Specifications

• Fuse pointclouds and stereovision data into a singular combined format
• Train 3D YOLO and Pointnet neural networks to process the data
 ▪ Models will be hot swappable
• Train PointDAN neural network to allow for domain-agnostic detections
• Create a ROS wrapper using Python/C++ to drive realtime sensors in testing the above networks
• Add messaging between system and IoT devices using MQTT and SmartSat™
Project System Architecture

Fusion

Jetson TX2

LiDAR

Cameras

Drivers

Processing

ROS (Robot Operating System)

Fusion

LiDAR-Stereo

Fusion

Neural

Network

Bounding

Boxes

Images

Cameras

Drivers

Stereovision
Project System Architecture

MQTT Plugin

Jetson TX2/Zynq UltraScale+

SmartSat™

MQTT Messaging API

Publish/Subscribe

MQTT Broker

IoT Device

MQTT Messaging API

Publish/Subscribe
Project System Components

• Hardware Platforms
 ▪ NVIDIA Jetson TX2 Developer Kit
 ▪ Xilinx Zync Ultrascale+
 ▪ Intel Realsense LiDAR Camera
 ▪ ImagingSource DMK 33GP031

• Software Platforms / Technologies
 ▪ ROS (Robot Operating System)
 ▪ Python
 ▪ NVIDIA Jetpack
 ▪ Kitti dataset
 ▪ MQTT
 ▪ VxWorks
 ▪ ONNX runtime
Project Risks

• Switching from prerecorded Lidar Data to sensor data
 ▪ Initially the team will have to use Kitti data for the models while the ROS wrapper is developed.
 ▪ ROS provides tools allowing sensor data to be easily read and integrated. The Kitti data format will be the same as the sensor allowing quick integration.

• Developing a system that fuses LiDAR and stereo data
 ▪ LiDAR and stereo data are typically different formats, respectively a pointcloud and a disparity map.
 ▪ The team will be converting the stereo disparity map into a pointcloud and combining them into a fused pointcloud

• Creating the neural network to process fused pointclouds
 ▪ Most neural networks for 3D image processing currently use either LiDAR or stereo data. The team must implement a model that is trained on the fused data from both.
 ▪ Since the team will be using fused pointclouds, a model trained on LiDAR pointclouds will work with the fused data.

• The model architecture must be size-efficient and be high performance
 ▪ The model will be deployed on an embedded system with memory and compute constraints
 ▪ The team will be benchmarking and testing the pretrained model to ensure performance, as well as utilizing integer quantization

• MQTT plugin must be compatible with multiple platforms
 ▪ The plugin is required to run on multiple different systems with different backends
 ▪ The team will test multiple MQTT APIs on all platforms to ensure that there is a suitable candidate
Questions?