Project Plan Presentation
United Airlines Training Forecast Model

The Capstone Experience
Team United Airlines Training
Ian Barber
Jerry Chang
Zachary Matson
Ethan Peterson
Rohit Vadlamudi

Department of Computer Science and Engineering
Michigan State University
Spring 2022
Functional Specifications

• United Airlines training team will be able to use this application to ensure each station has sufficient line and base technicians to operate on the flights.

• The application will give a risk dashboard to display which station(s) are at greatest risk moving forward.

• Each station can also have a more detailed report pulled up to analyze risk on a by shifts and by fleet level.
Design Specifications

• The training forecast model will be built as a Web Application to help better forecast where training needs to be focused on during the right time across several United Hubs.
• With the use of the Web Application, the training team will be able to select and sort by various categories to view a forecast of the current technicians' training situation.
• The forecast will display the users the number of technicians as well as the potential understaff situation that could occur.
Screen Mockup: Overview Page

Overview:

EWR - Undertrained at BID Area 101, Shift Code 1, for 737MAX
May need 1 more technician

90%

IAD - Everything Looks Good!

100%

IAH - Undertrained at BID Area 102, Shift Code 3, for 777
Need several more technicians

50%

ORD - Everything Looks Good!

100%

SFO - Everything Looks Good!

100%
Screen Mockup: Training Forecast

Currently at Station EWR:

There is a slight issue

97%

Click below to view problem areas, or view all data.

<table>
<thead>
<tr>
<th>STATION</th>
<th>BID_AREA</th>
<th>SHIFT_CODE</th>
<th>737MAX</th>
<th>737NG</th>
<th>747</th>
<th>757</th>
<th>767</th>
<th>777</th>
<th>787</th>
<th>Airbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWR</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWR</td>
<td>101</td>
<td>1</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Screen Mockup: Training Forecast

Currently at Station EWR:

Significant training may be required

54%

Click below to view problem areas, or view all data.

<table>
<thead>
<tr>
<th>Problem Areas</th>
<th>All Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION</td>
<td>BID_AREA</td>
</tr>
<tr>
<td>EWR</td>
<td>101</td>
</tr>
<tr>
<td>EWR</td>
<td>101</td>
</tr>
</tbody>
</table>
Screen Mockup: Training Forecast

Currently at Station EWR:

A great deal of training is required!!!

18%

Click below to view problem areas, or view all data.

<table>
<thead>
<tr>
<th>Problem Areas</th>
<th>All Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
<th>BID AREA</th>
<th>SHIFT CODE</th>
<th>737MAX</th>
<th>737NG</th>
<th>747</th>
<th>757</th>
<th>767</th>
<th>777</th>
<th>787</th>
<th>Airbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWR</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EWR</td>
<td>101</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Screen Mockup: Prediction
Technical Specifications

• We store data on flight schedules and trained technicians in an Azure SQL Database
• Azure functions are responsible for ingesting this data and performing periodic analysis
• We use a Flask web server in Azure App Service to manage client authentication and serve the APIs for our frontend
• Analysis code is written in Python and can be reused by our server and our serverless functions
• User authentication will utilize Azure AD and its integration with other Azure services
• Our frontend client is written in TypeScript with the React framework
System Architecture

- Azure Functions (w/ Python)
 - Periodic analysis
 - Data ingest

- Azure SQL Database
 - Structured input data
 - Analysis results

- Azure App Service
 - Flask Python Server Framework
 - APIs for frontend
 - On-demand analysis
 - Client authentication

- React + TypeScript
 - Frontend client
 - Display analysis results and insights to users
System Components

• Cloud Services
 ▪ Azure App Service
 o PaaS offering that will host our backend server and serve our APIs
 ▪ Azure SQL DB
 o Microsoft compatible SQL database
 o Store structured input data and analysis results
 ▪ Azure Functions
 o Serverless functions, will use for periodic analysis and data ingest

• Software Platforms / Technologies
 ▪ React with TypeScript
 o Frontend JavaScript framework, will use with TypeScript for typing support
 ▪ Flask
 o Python framework for web server development
 ▪ Azure SDK for Python
 ▪ Python Data Science Libraries
 o Pandas, NumPy, etc. used for analysis

• Development Software
 ▪ Visual Studio Code
Risks

• Determine the number of necessary technicians for different bases
 ▪ Different airports have different amounts of traffic, and there is a lot of data to sort through to ensure the number is calculated correctly
 ▪ Request a walk-through on the document from the client and make sure all team members comprehend the format

• Connecting the backend with the frontend
 ▪ Connecting the two separate systems will be challenging, as they will be mostly developed independent of each other
 ▪ Devs on both sides will meet to live code integration. Some proof-of-concept API connections for testing should take place early in the process.

• Authentication of API Calls and Frontend Access
 ▪ Data we are handling is sensitive and should not be able to be seen by those unauthorized, and be held securely
 ▪ Will use Azure AD to authenticate users and rely on Azure App Service and other built-in features to ensure security
Questions?