02/10:
Design Day Booklet Production Process

The Capstone Experience

Dr. Wayne Dyksen
James Mariani
Brenden Hein
Luke Sperling

Department of Computer Science and Engineering
Michigan State University

Spring 2022
Design Day Booklet

• Professional Publication
 ▪ Corporate Relations
 ▪ Alumni Relations
 ▪ Recruiting
 ▪ Keepsake for You

• Contents
 ▪ Schedule of Events
 ▪ Project Descriptions
The Capstone Experience

• Professional Publication
 ▪ Corporate Relations
 ▪ Alumni Relations
 ▪ Recruiting

• Contents
 ▪ Capstone Projects
 ▪ Academic Year
Team Project Page

• Template Distributed by Dr. D.
 ▪ Sponsor’s “Official” Name
 ▪ Sponsor Logo
 ▪ Project Title
 ▪ MSU Team Photo
 ▪ MSU Team Members’ Names
 ▪ Corporate Sponsors’ Names
 ▪ Headers and Footers
 ▪ Posted On Downloads Page
• Template Completed by Team
 ▪ Project Description
 ▪ Artwork
 ▪ Use Microsoft Windows Office 365 Version of Word.

Volkswagen Group of America
VW Car-Net Electric Vehicle Route Planner

Volkswagen Group of America is the North American operation headquarters and subsidiary of the Volkswagen Group, one of the world’s leading automobile manufacturers. They are comprised of 80,000 employees in the United States and sell their vehicles through a 1,900-strong dealer network.

Electric vehicles are one of the latest innovations in the automobile industry. Volkswagen, who just released their first electric vehicle, the ID.4, want a way to show potential customers the benefits of electric vehicles compared to gas powered vehicles as well as address and correct some of the common misconceptions many people have about electric vehicles.

Our VW Car-Net Electric Vehicle Route Planner application is displayed in Volkswagen dealerships and educates potential car buyers about the benefits of having an electric vehicle.

A major concern many buyers have about electric vehicles is the car’s range and charging options available on the road. Our application generates charging stops for gas vehicles and electric vehicles that stop at charging stations. Buyers can compare the various routes with respect to route length, route path, fuel costs and carbon emissions.

Our application also allows for extreme customizability including sliders to adjust starting battery charge, climate control, temperature and weather conditions to account for the effects these factors have on battery consumption.

Our Electric Vehicle Route Planner helps assure the fears of potential electric vehicle buyers by showing them that their daily route will have minimal disruptions and significant benefits if they switch to an electric vehicle.

Our Electric Vehicle Route Planner is developed as an Android application that utilizes API calls to handle route sharing attributes and route generation. Our application is written in Kotlin.

Microsoft State University Team Members: Credit to MSU
Joey Kelly
Geraldine Nie, Michigan
Andrew Sajagodari
Ann Arbor, Michigan
Zoe Kozelcek
East Lansing, Michigan
Michael Lin
Albuquerque Hills, Michigan
Erich Walsh
East Lansing, Michigan

The Capstone Experience
Design Day Booklet Production Process
Team’s Job

• Read instructions carefully.
• Check everything.
• Use Microsoft Windows Office 365 version of Word.
• Make a checklist.
• Write the project description.
• Read the instructions carefully.
• Provide the artwork.
• Read the instructions carefully.
• Update the project description and artwork.
• Make a checklist.
• Check everything 100 times.
• Read the instructions carefully.
• Make a checklist. ← Key
Project Description

• Read the instructions carefully. ← Have I mentioned this yet?
• Newspaper / Magazine Style
• Target Audience == General Public
• Do NOT Start...
 ▪ “Our project is…”
 ▪ “Our sponsor asked us to…”
 ▪ “Our project aims to…”
• Use present tense throughout.
• Write as though your project is complete.
 ▪ It works.
 ▪ Your sponsor is using it.
• Fill the entire textbox, no less, no more.
• Read Past Examples
 ▪ The Capstone Experience Booklet
 ▪ Previous Design Day Booklets (Design Day > Booklet)
 ▪ MSU Men’s Basketball
• Make a Checklist ← Have I mentioned this yet?
Project Description

• Beginning
 ▪ Sponsor Overview
 ▪ 2 to 3 Lines

• Middle
 ▪ The Problem & Your Solution
 ▪ Magazine Style
 ▪ Understandable by Non-Technical Person

• End
 ▪ Technical Jargon
 ▪ 2 to 3 Lines
Volkswagen Group of America is the North American operation headquarters and subsidiary of the Volkswagen Group, one of the world’s leading automobile manufacturers. They are comprised of 8,000 employees in the United States and sell their vehicles through a 1,000-strong dealer network.

Electric vehicles are one of the latest innovations in the automobile industry. Volkswagen, who just released their first electric vehicle, the ID.4, want a way to show potential customers the benefits of electric vehicles compared to gas powered vehicles as well as address and correct some of the common misconceptions many people have about electric vehicles.

Our VW Car-Net Electric Vehicle Route Planner application is displayed in Volkswagen dealerships and educates potential car buyers about the benefits of buying an electric vehicle.

A major concern many buyers have about electric vehicles is the car’s range and charging options available on the road. Our application generates driving routes for gas vehicles and electric vehicles that stop at charging stations. Buyers can compare these various routes with respect to route length, route path, fuel costs and carbon emissions.

Our application also allows for extensive customizability including sliders to adjust starting battery charge, climate control, temperature and weather conditions to account for the effects these factors have on battery consumption.

Our Electric Vehicle Route Planner helps assuage the fears of potential electric vehicle buyers by showing them that their daily routine will have minimal disruptions, and significant benefits if they switch to an electric vehicle.

Our Electric Vehicle Route Planner is developed as an Android application that utilizes API calls to handle route altering attributes and route generation. Our application is written in Kotlin.
Example Project Description: Spartan Basketball Player Timer

Michigan State University’s Men’s Basketball is elite, one of the top programs in the NCAA.

NCAA Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted.

One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game.

When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding of times provides visual cues that can be seen by the coaches at a distance. If there are many yellow or red boxes, the coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Time is written in Visual Basic. The underlying database is Microsoft Access.
Artwork

- Read the instructions carefully.
- Take 2 to 3 screenshot(s) of working software.
 - Use eye-catching examples.
 - Avoid boring or trivial things.
 - Splash Screens
 - Login Screens
- Fill up the entire artwork space. Whitespace is bad!
- Overlap artwork if necessary.
- Include “framing” for web and mobile apps.
 - Browser with Window Frame
 - iPhone, iPad
 - Android Phone or Tablet
 - NOT Laptop or Desktop
 - See https://mockuphone.com.
Artwork

- Read the instructions carefully. ← Have I mentioned this yet?
- Add borders if necessary.
 - If Blends Into White Background
 - Create a single PNG for each piece of artwork using PowerPoint.
 - Read Instructions
- Capture and provide very high-resolution images.
- Preserve aspect ratios.
- Crop to eliminate transparent “borders.”
- Eliminate all surrounding “whitespace.”
- Use paint.net.
- See examples.
 - The Capstone Experience Booklets
 - Design Day Artwork Feedback, Fall 2021
 - Previous Design Day Booklets (Design Day > Booklet)
 - MSU Men’s Basketball
- Make a Checklist ← Have I mentioned this yet?
Artwork

White Whitespace

Too Much Transparent Whitespace

Nicely Cropped Transparent Whitespace
Artwork Whitespace Issues

Look Identical
Border Shows Transparent Whitespace
Artwork Whitespace Issues

Select All. Rescale to 3” Height.

Download Design Day Artwork Whitespace Tester
Artwork Example

Amazon

AVAST: Amazon Video And Shopping Technology

Founded in 1994 as an online bookstore, Amazon is the largest online retailer in the world. In addition to retail, Amazon offers services in cloud infrastructure through Amazon Web Services, and music and video streaming through Amazon Music and Prime Video.

According to a recent study, 80% of internet usage will be people watching online videos by the year 2020. This presents a significant opportunity for all online retailers.

AVAST (Amazon Video And Shopping Technology) platform leverages the growth in online video streaming by providing users with an easy way to purchase products of interest that they see in the videos they are watching.

Using AVAST, an Amazon customer can stream videos from content providers such as YouTube and their favorite TV networks.

While a user is watching a video, AVAST analyzes it to find items of potential interest to the viewer. As the video plays, related Amazon products are displayed alongside the video as illustrated in the examples at the right.

For each item, AVAST displays a product description, pictures and ratings. A viewer can easily purchase any product simply by clicking on the conveniently provided link to Amazon.

The backend of AVAST (Amazon Video And Shopping Technology) is built using Angular 6, while the backend is implemented using PHP Laminas. In addition, several Amazon Web Services are used including Recognition to analyze videos, and RCT to host the AVAST website.
Aptiv is a global technology company that is transforming mobility with its portfolio of safe, efficient, and connected solutions for its customers. As a leader in autonomous vehicle development, Aptiv maintains an extensive test fleet of autonomous vehicles, which must be managed and monitored.

Our Autonomous Vehicle Fleet Connectivity App provides connectivity to Aptiv’s autonomous test fleet, which operates across the U.S., Europe, and Asia, and includes various vehicles with software for every level of autonomy.

Among other features, our system provides scheduling of test vehicles. After logging in, Aptiv engineers see a calendar view of the entire fleet from which they can select a particular day to view a list of available vehicles. Once a vehicle is selected, our app displays a complete set of information about it including its past usage, reservations and diagnostic information.

In addition to checking availability of vehicles based on dates, our app provides for advanced search to narrow the scope based on things like type of vehicle, location of vehicle, and level of autonomy.

The “My Reservations” tab shows a user’s upcoming vehicle reservations as well as enabling them to make and cancel reservations.

Our Autonomous Vehicle Fleet Connectivity App is written using the Angular web framework, obtaining information from Aptiv’s native servers. Communications are implemented using Microsoft Azure Services.
The Capstone Experience

Design Day Booklet Production Process
Artwork Example
The Capstone Experience

MSU Federal Credit Union
Banking with Amazon’s Alexa and Apple’s Siri

Founded in 1937, Michigan State University Federal Credit Union offers financial services to Michigan State University, Oakland University faculty, staff, students, alumni association members and their families. With 200,000 members and over $1.3 billion in assets, MSUFCU is the largest university-based credit union in the world.

MSUFCU currently offers mobile banking apps on both Apple’s iOS and Google Android devices for members to access their accounts and perform banking transactions at any time.

Our Banking with Amazon’s Alexa and Apple’s Siri system streamlines MSUFCU’s technological edge by expanding our banking offerings to voice-controlled smart devices such as Amazon Alexa enabled devices, Apple Watch and Android Wear.

Voice-controlled technologies give MSUFCU members new ways to interact with their accounts, including accessing their account balance, transferring money and obtaining information about recent transactions. Members can request other information about MSUFCU such as branch hours, current loan rates and the location of the nearest ATM or branch.

Our companion administrative web portal enables MSUFCU staff to manage the available information and services offered by these voice technologies. Frequently asked questions can be added to the app in minutes to improve the user experience.

The Alexa skill is written in Python, Apple Watch in Swift, and Android Wear in Java. All three connect to a MSUFCU database through JSON. The administrative web portal is written in PHP.

Michigan State University
Team Members (left to right)
Brian Jorgenson
Loran Nance
Kieran Hall
Vanderbilt City, Michigan
Will Rodrick
Chicago, Illinois
Ethan Boyd
Saline, Michigan
Charlotte Bell
Beloit

MSUFCU Project Sponsors
Santosha Ambeyappi
East Lansing, Michigan
April Clabes
East Lansing, Michigan
Emily Fedor
East Lansing, Michigan
Codie Luckowski
East Lansing, Michigan
Andy Lynch
East Lansing, Michigan
Ben Maxon
East Lansing, Michigan
Andy Wenzel
East Lansing, Michigan

What is my checking account balance?

1234

Please state your 4-digit security code.

You have $15.32 in your checking account.
Michigan State University Men’s Basketball Spartan Basketball Player Timer

NCAA Division I basketball is very competitive. Although it may not be apparent to the casual observer, every detail of each game is carefully planned and scripted.

One aspect of a game plan is that of playing times. For each player, the coaches determine target times for how long he can play at a stretch, how long he needs to rest before playing again, and the total amount of time he should play in a game.

Developed with Coach Tom Izzo, our Spartan Basketball Player Timer is used by the basketball staff on the bench during the game.

When a player enters the game, his playing time is displayed with a solid green background. When his target playing time goes under two minutes, it is displayed in yellow. When the time goes below zero, it is displayed in red.

The color coding provides visual cues that can be seen by coaches at a distance. If there are many yellow or red boxes, coaches begin to plan substitutions.

A game summary for all the players can be displayed at any time whether the game clock is running or stopped.

Our software runs on a Microsoft Windows Tablet PC about the size of a traditional clipboard only slightly thicker. With no mouse or keyboard, all input is done with a pen.

Spartan Basketball Player Timer is written in Visual Basic. The underlying database is Microsoft Access.
The DD Booklet Production Process

Zip Folders to Teams

Zip Folders From Teams

Edit Artwork
Dr. D.

Edit Project Descriptions
James, Brenden, Luke & Jill

Merge Edits
Dr. D.

Zip Folders To Designer

February 19
11:59 p.m.
1 Template
From Dr. D.
To Team

All of the textboxes are named for processing.

Do NOT create your own textboxes.

If necessary, start over from the original downloaded template.

There are four placeholders for artwork.

The text boxes have red outlines for handles.

Each textbox includes one embedded placeholder artwork, a grey png image.

To add your artwork, right click on grey image and select Change Picture.

Delete the textboxes placeholders you don’t need.

Do NOT create your own textboxes for artwork.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training. Schedulers can schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right):
Josh Pecenhi
Patrick Michigan
Jack Gooche
Naperville, Illinois
Laura Emelie
Laurel, Michigan
Andrew Ferguson
Cleveland, Michigan

United Airlines
Project Sponsors:
Amador Arre
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McElheny
Houston, Texas
Tom Wilmun
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,200 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 650 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Porembi
Patrick, Michigan
Jack Soanka
Naperville, Illinois
Laura Eramo
Lansing, Michigan
Andrew Ferguson
Kalamazoo, Michigan

United Airlines
Project Sponsors
Amanda Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McDaniel
Houston, Texas
Tom William
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 300 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedule to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few courses in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of courses, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Round 1 edits by James and Ryan ...
- Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedule to schedule instructors and students for courses across the country.
- When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request imposed by instructors or supervisors.
- Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.
- The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.
- The web app is fully functional using both web browsers and mobile browsers.
- Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Poeschke
Pramod, Michigan
Jack Seaba
Naperville, Illinois
Laura Mandzi
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines
Project Sponsors
Anand Anand
Chicago, Illinois
Craige Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda Bottari
Houston, Texas
Tom Wilson
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations Division has 60 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our web and iOS apps, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes, taking into account all relevant factors, manual scheduling can be time-consuming.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors, and takes into account instructor preferences and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world's second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United's Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United's maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request inputted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University
Team Members (left to right)
Josh Pecenski
Patrick, Michigan
Jack Goebels
Naperville, Illinois
Laura Emile
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines
Project Sponsors
Jamison Arme
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McDaniel
Houston, Texas
Tom Wissman
Chicago, Illinois
3
Artwork Draft
From Team
To Dr. D.

What’s wrong with this artwork?
Dr. D. duplicated existing artwork to illustrate requested update.
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 60 instructors, who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors and students for courses across the country.

When the scheduler goes to schedule a course, the system displays available locations and instructors. The scheduler can also schedule a course from a training request submitted by instructors or supervisors.

Our system contains a schedule optimization system. Within a given time frame, a scheduler inputs a set of classes and locations. The optimizer recommends an optimal schedule, including instructor and classroom. This reduces the amount of time the scheduler needs to plan courses.

The scheduler will be able to view calendars with published, planned, and optimized courses. They can edit classes from this view. The calendars can be sorted by instructor, location, and class. If a conflict is attempted to be scheduled, a notification will alert the scheduler.

The web app is fully functional using both web browsers and mobile browsers.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, and Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
Josh Pescielli
Patrick McWeeney
Jack Gourley
Kara Wood
Laura Emile
Laurea, Michigan
Andrew Ferguson
Laurea, Michigan

United Airlines Project Sponsors
Amanda Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Lynda McDaniel
Houston, Texas
Tom Williams
Chicago, Illinois
United Airlines

Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 15 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
- Josh Podesil
- Patrick Michgan
- Jack Goode
- Naperville, Illinois
- Laura Emilia
- Lansing, Michigan
- Andrew Ferguson
- Lansing, Michigan

United Airlines Project Sponsors
- Amanda Anne
 - Chicago, Illinois
- Craig Bennett
 - Chicago, Illinois
- Rick Brown
 - Chicago, Illinois
- James Hill
 - Chicago, Illinois
- Lynda McDaniel
 - Houston, Texas
- Tom Wilson
 - Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated schedule optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availabilities.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular, and Node.js, and uses Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right)
Josh Pecenbli
Patrick, Michigan
Jack Goona
Naperville, Illinois
Laura Emma
Lansing, Michigan
Andrew Ferguson
Lansing, Michigan

United Airlines Project Sponsors
Amelia Anne
Chicago, Illinois
Craig Bennett
Chicago, Illinois
Rick Brown
Chicago, Illinois
Jamie Hill
Chicago, Illinois
Lynda McShan
Nashville, Tennessee
Tom Wilson
Chicago, Illinois
United Airlines
Training Scheduling and Optimization System II

United Airlines is the world’s second-largest airline company, operating 4,600 flights a day to 357 destinations. To maintain its fleet of 1,300 aircraft and ensure successful flights, it is crucial to have properly trained personnel. United’s Technical Operations division has 45 instructors who teach around 700 classes yearly to over 7,000 employees.

Our Training Scheduling and Optimization System II provides a web app to facilitate United’s maintenance training schedulers to schedule instructors, students, and courses across the country.

When the scheduler wants to schedule a course, they must take into account a number of factors, including instructor availability, venue availability, instructor travel distance, and instructor qualifications.

Using our mobile compatible website, users can schedule classes manually, or through our automated scheduler optimizer. Manual scheduling can be used effectively for a few classes in a short time frame. However, when dealing with a large number of classes and taking into account all relevant factors, manual scheduling is an arduous task.

Our schedule optimization feature allows a scheduler to input a given time frame, a set of classes, and a set of locations. The optimizer then recommends an optimal schedule, including instructor and classroom assignments.

The optimized schedule minimizes the distance traveled by instructors and takes into account instructor qualifications and room availability.

An optimized schedule saves United Airlines significant time, money, and resources.

Our Training Scheduling and Optimization System II web app is built with ASP.NET Core, Angular 8, Node.js, an Entity Framework, and an Azure SQL database. The web app is hosted as an app service on Azure Cloud Platform.

Michigan State University Team Members (left to right):
- Jordi Pozniak
 Michigan, Michigan
- Jack Sneke
 Naperville, Illinois
- Laura Danis
 Livonia, Michigan
- Andrew Ferguson
 Livonia, Michigan

United Airlines Project Sponsors:
- Amazon Air
 Chicago, Illinois
- Carnival Cruises
 Miami, Florida
- Delta Air Lines
 Atlanta, Georgia
- JetBlue Airways
 New York, New York
- Southwest Airlines
 Dallas, Texas
- United Airlines
 Chicago, Illinois
- Virgin Atlantic Airways
 London, England

PAGE 46
<table>
<thead>
<tr>
<th>Weekday</th>
<th>Date</th>
<th>Task</th>
<th>Elapsed Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday</td>
<td>February 9</td>
<td>Dr. D. posts zipped folders with templates for downloading.</td>
<td>0</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 10</td>
<td>Dr. D. discusses process at all-hands meeting.</td>
<td>1</td>
</tr>
<tr>
<td>Saturday</td>
<td>February 19</td>
<td>Teams submit zipped folders with first draft by 11:59 p.m.</td>
<td>10</td>
</tr>
<tr>
<td>Sunday</td>
<td>February 20</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>11</td>
</tr>
<tr>
<td>Sunday</td>
<td>February 20</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>11</td>
</tr>
<tr>
<td>Sunday</td>
<td>February 20</td>
<td>TAs begin editing project descriptions.</td>
<td>11</td>
</tr>
<tr>
<td>Sunday</td>
<td>February 20</td>
<td>Teams begin updating artwork.</td>
<td>11</td>
</tr>
<tr>
<td>Tuesday</td>
<td>February 22</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>13</td>
</tr>
<tr>
<td>Tuesday</td>
<td>February 22</td>
<td>TAs discuss project descriptions at split-hands meeting.</td>
<td>13</td>
</tr>
<tr>
<td>Tuesday</td>
<td>February 22</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>13</td>
</tr>
<tr>
<td>Wednesday</td>
<td>February 23</td>
<td>Dr. D. edits the artwork and creates artwork feedback.</td>
<td>14</td>
</tr>
<tr>
<td>Wednesday</td>
<td>February 23</td>
<td>Dr. D. posts zipped folders with artwork feedback for downloading.</td>
<td>14</td>
</tr>
<tr>
<td>Wednesday</td>
<td>February 23</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>14</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 24</td>
<td>Dr. D. discusses artwork feedback at all-hands meeting.</td>
<td>15</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 24</td>
<td>TAs discuss project descriptions at split-hands meeting</td>
<td>15</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 24</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>15</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 24</td>
<td>Jill begins editing project descriptions.</td>
<td>15</td>
</tr>
<tr>
<td>Thursday</td>
<td>February 24</td>
<td>Teams submit zipped folders with updated artwork by 11:59 p.m.</td>
<td>15</td>
</tr>
<tr>
<td>Saturday</td>
<td>February 26</td>
<td>Jill submits project description edits by 8:00 a.m.</td>
<td>17</td>
</tr>
<tr>
<td>Saturday</td>
<td>February 26</td>
<td>TAs and Jill meet to discuss project descriptions.</td>
<td>17</td>
</tr>
<tr>
<td>Saturday</td>
<td>February 26</td>
<td>TAs begin final editing project descriptions.</td>
<td>17</td>
</tr>
<tr>
<td>Saturday</td>
<td>February 26</td>
<td>TAs submit project description edits by 11:59 p.m.</td>
<td>17</td>
</tr>
<tr>
<td>Sunday</td>
<td>February 27</td>
<td>Dr. D. posts final version of project descriptions.</td>
<td>18</td>
</tr>
<tr>
<td>Tuesday</td>
<td>March 1</td>
<td>Dr. D. discusses project descriptions at all-hands meeting.</td>
<td>20</td>
</tr>
<tr>
<td>Wednesday</td>
<td>March 2</td>
<td>Teams submit final version of project description by 11:59 p.m.</td>
<td>21</td>
</tr>
<tr>
<td>Thursday</td>
<td>March 3</td>
<td>Dr. D. discusses any remaining issues at all-hands meeting.</td>
<td>22</td>
</tr>
<tr>
<td>Friday</td>
<td>March 4</td>
<td>Dr. D. merges final artwork with final project description.</td>
<td>23</td>
</tr>
<tr>
<td>Saturday</td>
<td>March 5</td>
<td>Dr. D. submits zipped booklet assets to graphic designer.</td>
<td>24</td>
</tr>
</tbody>
</table>
Zipped Assets Folder

• Link On Downloads Page
• Customized Per Team
• Contents
 ▪ Project Page Template .docx
 ▪ Four Template Artwork Files .png
• Do not change filenames.
• Example
 ▪ team-amazon-design-day-booklet-page.zip
 ▪ team-amazon-design-day-booklet-page.docx
 ▪ team-amazon-artwork-1.png
 ▪ team-amazon-artwork-2.png
 ▪ team-amazon-artwork-3.png
 ▪ team-amazon-artwork-4.png
Submission

• READ Submission Instructions Carefully
• Zipped Assets Folder
 ▪ Folder Name: team-urban-science-design-day-booklet-page
 ▪ Contents
 o team-urban-science-design-day-booklet-page.docx
 o team-urban-science-artwork-1.png (Very High Resolution)
 o team-urban-science-artwork-2.png (Very High Resolution)
 o team-urban-science-artwork-3.png (Very High Resolution)
 ▪ Delete unused placeholder artwork files.
 ▪ Zip Filename: team-urban-science-design-day-booklet-page.zip
• Upload to Microsoft Teams
 ▪ General Channel File Space
 ▪ Folder Named design-day-booklet-team-zip-files
 ▪ Team’s Private Channel File Space
 ▪ Due 11:59 p.m., Saturday, February 19. ← Next Saturday
Design Day Grade

• 5% of Final Grade
• Two Factors
 ▪ Design Day Booklet Team Page Process
 ▪ Design Day Performance
• Design Day Booklet Process Deductions Including But Not Limited To...
 ▪ Project Description Errors and Effort to Rewrite
 ▪ Artwork Errors and Effort to Correct
 ▪ Failure to Use Windows Version of Office 365
 ▪ Submission Errors
What’s ahead?

• Alpha and Beta Presentation Meetings
 ▪ Returning to 4 Meetings Format
 ▪ \(2 \times C \times (4 \times T/C + 4 \times T/C + 4 \times T/C + 3 \times T/C) = 2C \times 15 \times T/C = 30 \times T\)
 o \(C \equiv \) Channels
 o \(T \equiv \) Teams

 ▪ 15 Minutes / Presentation
 o \(4 \times P \times 15 \times M / P = 60 \times M\), Leaves 20 M Time Buffer
 o \(3 \times P \times 15 \times M / P = 45 \times M\), Leaves 35 M Time Buffer

 ▪ Start Alpha Presentations 2 Day Early
 o 6 Teams Volunteered
 o \(3 \times T + 4 \times T + 4 \times T + 4 \times T\)
 o Slide Decks Still Due Wednesday, February 21
What’s ahead?

• Upcoming Meetings
 ▪ 02/10: Design Day Booklet Production Process
 ▪ 02/15: Creating and Giving Presentations
 ▪ 02/17: Resume Writing and Interviewing
 ▪ 02/22: Alpha Presentations ← New
 ▪ 02/24: Alpha Presentations
 ▪ 03/01: Alpha Presentations
 ▪ 03/03: Alpha Presentations
 ▪ 04/05: Beta Presentations
What’s ahead?

• Important Dates for Planning
 ▪ 02/08: Project Plan Presentations Start
 Start Working Towards Alpha Presentation ←Key
 ▪ 02/19: Design Day Booklet Zip File Due ←Next Saturday
 ▪ 02/22: Design Day Updated Artwork Due
 ▪ 02/22: Alpha Presentations Start ←New
 ▪ 02/23: Alpha Slide Decks Due
 ▪ 02/24: Alpha Presentations Start
 Start Working Towards Beta Presentations ←Key
 ▪ 04/04: Beta Slide Decks Due ←New
 ▪ 04/05: Beta Presentations Start ←New
 Start Working on Project Videos ←Key