Beta Presentation
Hardware in the Loop (HIL) Vehicle Simulator

The Capstone Experience

Team Bosch
Justin Armstrong
Luke Monroe
Aditya Raj
Alan Wagner
Christian Zawisza

Department of Computer Science and Engineering
Michigan State University
Fall 2021
Project Overview

• Windows 10 application that will simulate a vehicle’s CAN Bus by using a HIL system.
• Current hardware is too expensive and not available to all of Bosch’s engineers at once.
• Simulates vehicle functions such as acceleration, steering, braking, gear changing, cruise control, and more.
• Ability to simulate different variations of vehicles that is configurable by the user.
System Architecture

Windows 10

PCAN Basic API

Python

wxPython

DBC Files

PEAK Driver

PCAN-USB Pro FD

Bosch Radar

BOSCH
Hardware in the Loop Diagram
The Main Frame

30.0 Kph 18.6 Mph 1500 Rpm
Cruise Control State: 2 ACC Engaged
Cruise Control Set Speed: 40 Kph, 25 Mph
HMI Cruise: 36 ACC Proximity Warning
HMI Brake: 0 No Code
HMI Lane: 0 No Code
Wheel Positions: RHR RHF LHR LHF
Wheel Speeds: 30.0 30.0 30.0 30.0
Wheel Pulse Counters: 40 40 40 40
The Main Frame/Search Frame
The Project Configuration Frame
The Graph Frame

![Signal Trace Graph]

- ENGINE1.EngineSpeed
- 1_DASM_DIAG_REQ.PUDN
- 1.CTRL_CRUISE.ACC_On
- 1.STATUS_C_DASM.CurrentFailSts_DASM
- 1.STATUS_C_DASM.GenericFailSts_DASM
- 1.STATUS_DASM.ACCSystemSts
- 1.STATUS_DASM.DISPLAY.DisplaySts_ACC
- 1.STATUS_DASM.DISPLAY.DisplaySts_OFF
- 1.STATUS_DASM.DISPLAY.DisplaySts.Veh
- 1.STATUS_DASM.DISPLAY.Set.Speed.MPH
- 1.STATUS_DASM_INDICATION.ACC_DisPcpnu
- 1.STATUS_DASM_INDICATION.ACC_FailSts
- 1.STATUS_DASM_INDICATION.NCC_FailSts
What’s left to do?

• Stretch Goals
 ▪ The ability to log tests and load logs.
 ▪ Add tips and pop-ups to the GUI for helpful hints.

• Other Tasks
 ▪ Create a way to turn our project into an executable.
 ▪ Review our code in accordance with PEP8.
 ▪ Continue optimizing and refactoring our code.
 ▪ Continue testing our application.
Questions?