

24-Hour Road Service Mobile Apps

User-Admin Manual

Fall 2011

Michigan State University Computer Science and Engineering Capstone Team Members:

Paul Fritschen

Justin Hammack

Lingyong Wang

Contents
1. User Manual ... 3

2. Smartphone Applications ... 3

2.1 Logging In .. 3

2.2 Main Screen .. 4

2.3 Requesting Road Trouble Service .. 6

2.4 Viewing Insurance Information ... 10

2.5 Finding Nearby Places .. 12

3. Administrative Website ... 14

4. Administrator Manual .. 16

4.1 Webservice .. Error! Bookmark not defined.

4.2 iPhone ... 17

4.3 Android ... 19

4.3.1 Retrieving Insurance Info .. 19

4.3.2 Sending Logging Data .. 19

4.4 Website ... 20

1. User Manual

 This manual is designed to show how to use both the smartphone applications and the

website. The sections tend to be grouped as tasks that a user can accomplish.

2. Smartphone Applications

 The following sections show the different screens that comprise the applications. In

these sections each figure is comprised of a screenshot from the iPhone on the left and a

screenshot from the Android on the right.

 The smartphone applications have three primary functions, requesting road trouble

service, viewing insurance information, and finding nearby locations. These functions are

accessed through the main screen after logging in. In the following sections it is shown how to

use each of the functions and the login and main screens.

2.1 Logging In

Figure 2.1 Login Screen

 The login screen allows the user to input their Auto-Owners Insurance information. This

information is conveyed to a web service that will authenticate the information with the Auto-

Owners Insurance database. On successful authentication, user insurance data will be

downloaded to the phone and stored in a local database. On this screen the user has the

following two options

 Login: The user can login with their Auto-Owners Insurance username and password.

 Skip: If the user is not currently an Auto-Owners Insurance member, the user can skip

login to search for nearby places, or use the call functionality of the application.

2.2 Main Screen

Figure 2.2 Main Screen

 If a user has logged in before, the main screen will be the first screen to show up. From

here the user can make a variety of selections. If the user does not have an internet connection

the “Find” feature will be disabled.

 Request Road Trouble Service: The user can click this button to begin the request for

service. From here they will proceed to the Service Request Screens shown in section

2.3.

 View Insurance Data: This button will take the user to a screen showing their login

information. This is shown in section 2.4.

 Find Service Centers: The user can click this button to find nearby service centers. This

functionality is explained in section 2.5.

 Find Hotels: The user can click this button to find nearby hotels. This functionality is

explained in section 2.5.

 Find Restaurants: The user can click this button to find nearby restaurants. This

functionality is explained in section 2.5.

2.3 Requesting Road Trouble Service

Figure 2.3.1 Vehicle Selection Screen

 This series of screens guide the user through the steps to acquire service. The first

screen displays a list of vehicles insured under the user’s policy. The user selects the vehicle

that needs service.

 Any Vehicle: The user clicks a button corresponding to the vehicle that requires service.

Figure 2.3.2 Edit Location Screen

 The map and address seen in the above screen are both automatically populated based

on the smartphone’s GPS location. If this location does not accurately represent the vehicles

location the user can edit the textbox to include a correct address or some other description of

the area.

 Send Email to Quest/Send My Location: This user should select this button if the map

and address correspond to their vehicles location. If it is not correct the user should

first edit the address.

Figure 2.3.3 Send Email Screen

 The user is taken to the phones native email client. The email address for Quest

as well as all the information contained with the body of the email is automatically

populated. Pressing send continues the process.

 Send: The user will select this button if they are ready to email a service request to

Quest. The user will be taken to the call screen shown in the next figure.

 Cancel/Discard: This user should select this button if they do not wish to request

service.

Figure 2.3.4 Call Screen

 After the email is sent this user is prompted to call Quest. They should ask to

make sure that their email has been received and that service will be provided.

 Call Quest: The user will select this button to make a confirmation call to Quest.

2.4 Viewing Insurance Information

Figure 2.4.1 View Insurance Screen

 Clicking the View Insurance button on the main screen brings the user here. The user’s name,

policy number, and list of insured vehicles are displayed. Clicking on a vehicle displays the vehicle color,

year, make, and model, as well as its VIN, and Roadside Trouble Service Limit. This is shown in the

following figure.

Figure 2.4.2 View Vehicle Screen

2.5 Finding Nearby Places

Figure 2.5.1 View Vehicle Screen

 By clicking on one of the find features from the main menu the user can find nearby hotels,

restaurants or service centers. This brings them to the above screen. Locations are arranged with the

closest one at the top of the list. Clicking on a location opens the phone’s GoogleMaps application and

will display a map to the desired location. This is shown in the figure below.

Figure 2.5.2 GoogleMaps Directions Screen

3. Administrative Website

 The Administrative Website pulls information about service requests from a logging

database. This website enables access to various graphs and tables based on the logging data.

 Figure 3.1 shows the statistics view. This view holds three charts depicting usage by

Road Trouble Service Limit (RTS Limit), Vehicle Make, and the state that the request took place

in. There are filtering options available for these charts. They include state, start and end time,

and start and end date.

Figure 3.1 Statistics View

 Figure 3.2 shows the drop down calendar that will appear when clicking one of the date

fields. The Prev and Next buttons are used to change the month, and there is a drop down box

to select the year.

Figure 3.2 Calendar Select

 The website has a table view for viewing all transactions at once. This is depicted in

figure 3.3. This table will sort by any column that the user clicks.

Figure 3.3 Table View

4. Administrator Manual

The Administrator manual is designed to assist with setting up the web service and

demonstrating how to use it to push and pull information.

4.1 Web service

4.1.1 Setting up the web service

 The web service is ready to run in Eclipse on a Windows Server 2008 R2 with JRE 1.7

installed. By default the web service will use port number 8888. This can be changed in

Servers/Tomcat v6.0 Server at localhost-config/server.xml. The IP address used by the web

service will have to be changed to the IP address of the server. This is in Auto-

Owners/build.xml. The web service returns json formatted strings.

4.1.2 Using the API

 There are two available APIs for use by the applications.

1. http://35.9.22.108:8888/autoowners/user.do

This API has three different functions depending on the arguments passed. They are as

follows:

a. user.do

This will retrieve all transactions in the database. An example return value is

provided below.

{"results":[{"transactionKey":"004824a2-8123-4b74-a221-

06fe66a94e87","lastName":"Fritschen","firstName":"Paul","policyNumber":"12-

345678-

90","rtsLimit":"75","locationDescription":"null","state":"Michigan","date":"2011-12-03

17:45:37.0","inceptionOfPolicy":"2010-08-16","termStart":"2011-08-

16","termEnd":"2012-08-

16","vehicleVin":"5GZCZ43D13S812715","vehicleYear":"2001","vehicleMake":"Ford"

,"vehicleModel":"Focus","vehicleColor":"Red"},{"transactionKey":"00ccdabc-90be-

4442-8cb5-

e6e5677bbebb","lastName":"Fritschen","firstName":"Paul","policyNumber":"12-

345678-90","rtsLimit":"100","locationDescription":"null","state":"null","date":"2011-12-

03 14:25:58.0","inceptionOfPolicy":"2010-08-16","termStart":"2011-08-

16","termEnd":"2012-08-

16","vehicleVin":"2ZGCZ13S43D715812","vehicleYear":"2010","vehicleMake":"Nissa

n","vehicleModel":"Sentra","vehicleColor":"Black"}] }

b. user.do?username=user&password=pass

This will attempt to find an insurance key based on the given username and

password. If the username and password are found, the insurance key is returned,

otherwise “fail” is returned.

c. user.do?insuredKey=123456

This will attempt to find an insurance record based on the passed insured key. If

the record is found, the insured record along with any insured vehicles is returned,

otherwise an empty json set is returned. An example value return and empty json

set are provided below.

{"results":{"insuredKey":"abcd","lastName":"Fritschen","firstName":"Paul","policyNum

ber":"12-345678-90","inceptionOfPolicy":"2010-08-16","termStart":"2011-08-

16","termEnd":"2012-08-

16","vehicles":[{"vehicleKey":"2222","vehicleVin":"5GZCZ43D13S812715","rtsLimit":

75,"vehicleYear":2001,"vehicleMake":"Ford","vehicleModel":"Focus","vehicleColor":"

Red"},{"vehicleKey":"2323","vehicleVin":"2ZGCZ13S43D715812","rtsLimit":100,"vehi

cleYear":2010,"vehicleMake":"Nissan","vehicleModel":"Sentra","vehicleColor":"Black

"}]}}

{"results":{"vehicles":[]}}

2. http://35.9.22.108:8888/autoowners/userAdd.do?lastName=Hammack&firstName=Justin

&policyNumber=123-

4567&rtsLimit=50&locationDescription=Lansing&state=MI&date=2005-04-

0615:32:30&inceptionOfPolicy=2005-04-06&termStart=2005-04-06&termEnd=2005-04-

06&vehicleVin=212121&vehicleYear=2001&vehicleMake=Ford&vehicleModel=Focus&v

ehicleColor=Red

This will add a service request transaction to the logging database. The call will

return “success” or “fail”

4.2 iPhone

The following demonstrates how to set up the phones database and how to use the web

service.

Setup database:

[DatabaseManager copyDatabseIfNeeded];

Reset database (usually used for debug reason):

 [DatabaseManager resetDatabase];

Communicate with database:

If you want to add or read data from database, you just implement the functions in the

DatabaseManager, examples for add and get user info from database.

 - (void) addUser:(User *)user {

 const char * sql = "insert into userinfo (insuredkey) values (?)";
 sqlite3_stmt *insert_statement = nil;
 sqlite3_prepare_v2(database, sql, -1, &insert_statement, NULL);

sqlite3_bind_text(insert_statement, 1, [user.insuredKey UTF8String], -1,
SQLITE_TRANSIENT);

 sqlite3_step(insert_statement);
 sqlite3_finalize(insert_statement);
 sqlite3_close(database);

}

 - (User *) getUser {
 const char *sql = "SELECT insuredkey FROM userinfo";
 sqlite3_stmt *statement;
 sqlite3_prepare_v2(database, sql, -1, &statement, NULL);
 NSString *insuredKey = nil;
 //get data and store data
 while (sqlite3_step(statement) == SQLITE_ROW) {
 //everything is array to make things easier

insuredKey = [NSString stringWithUTF8String:(char *)sqlite3_column_text(statement, 0)];
 }
 sqlite3_finalize(statement);
 sqlite3_close(database);

 return [[[User alloc] initWithInsuredKey:insuredKey] autorelease];

}

Using DatabaseManager example (get insurance info):

 DatabaseManager *insuranceDetailDatamanager = [[DatabaseManager alloc] init];

 User *userDetail= [insuranceDetailDatamanager getUser];

 [insuranceDetailDatamanager release];

Using Communicationmanager and API:

 apiString is the API url string,

 CommunicationManager *connection = [[CommunicationManager alloc] init];

 connection.delegate = self;

 [connection connectWithAPIString:apiString];

 [connection release];

If you set the delegate to self, you have to implement the following function to use to

process the received data. Data is the data returned from server, it can be Json or text

depends on which API you are using

 - (void) apiConnection:(CommunicationManager *)connection didReceiveData:(NSData *)data;

4.3 Android

 The phone uses the web service to communicate with the AOI database and logging

database.

 4.3.1 Retrieving Insurance Info

 To use to web service to retrieve information from the Auto-Owners Insurance

 database the following functions must be used.

 String InsuranceData=comManager.getInsuranceInfo();

 This uses an instance of the ConnectionManager to retrieve a String of the

 Insurance Data. This information must be parsed to be stored in the phones

 internal database. The following command parses the data and stores it in an

 array of ContentValues.

 ContentValues[] data=parser.parseInsuranceInfo(InsuranceData);

 To store this information in the database one must use the following call.

 dbhelper.updateInsuranceInfo(data[0]);

 Storing vehicles is done in a for loop for the size of the potential amount of

 vehicles. Current Implementation supports a maximum of 19 insured vehicles.

 dbhelper.addVehicle(data[i];

 4.3.2 Sending Logging Data

 To send logging data to the logging database the web service must also be used.

 This is done by executing the following commands. An instance of the Parser

 class takes DatabaseManager object and the index to what vehicle was selected

 by the user on the vehicles screen and returns a string. This string is then sent

 to an instance of the CommunicationManager.

 String sendString=parser.parseTransactionsSend(dbhelper, index);

 String check=comManager.sendTransaction(sendString);

4.4 Website

 The administrative website uses the web service to retrieve all of the service requests.

The private variable URL in the file HomeController.cs (shown below) should be set to the IP

address of the web service.

 // URL for all web service requests
 private const string URL = "http://35.9.22.108:8888/autoowners/user.do";

 The function GetTransactions in the HomeController is where the http request is sent.

 /// <summary>
 /// Gets the service request transactions from the web service
 /// </summary>
 private void GetTransactions()

 The JSON response from the web service is deserialized in the function GetTransactions

in the file Transactions.cs under Models. The function takes a json string and returns a list of

transactions. This list will be empty if there is an error deserializing the string. The Transaction

model’s properties must match the columns in the transaction table.

 public static List<Transaction> GetTransactions(string jsonString)

