Project Plan
MSU Next Generation Flight Deck

The Capstone Experience

Team GE Aviation
Daniel Alexander
Steven Cornfield
Alex Delgado
Bill Zajac

Department of Computer Science and Engineering
Michigan State University
Spring 2011
Project Overview

• Create the MSU Next-Generation Flight Deck
• Make flying:
 ▪ Easier
 ▪ Safer
 ▪ Ready to meet the demands of the future
Fact

- Regardless of how advanced a flight deck is, the human pilot is still its most vital asset.
- Pilots need to make decisions:
 - Quickly
 - Informatively
 - Correctly
Functional Specifications

• Integrate previous capstone projects
• Each display can run on its own computer
• The pilot/end-user interacts with the display
• Intercommunication and Cross Functionality
 ▪ Industry research
 ▪ Limited by functional capabilities
• Simulated Environment
Design Specifications

• X-Plane 9 transmits data
 ▪ Plug-in System
 ▪ Network
 ▪ Real-Time

• Separate applications simulate each display
 ▪ Receive Data via network
 ▪ Render data graphically in real time
 ▪ Communicate within each other

• Configurable
 ▪ All applications may run on a single computer
 — OR—
 ▪ Each application may run on its own system
Screen Shot - Primary Flight Display
Screen Shot - Lateral Map Display
Screen Shot - Super Synoptics

ENGINE

N1
4.0

EGT
418.0

Oil Temp
128.6

Oil Pressure
8.6

IMMEDIATE

SITUATION:
Right Engine Failure:
Throttle down opposite engine and throttle up Engine 2
Technical Specifications

• Plugins
 ▪ C and/or C++
 ▪ X-Plane SDK
• Displays
 ▪ C and C++
 ▪ OpenGL
 ▪ Boost, Xtools, nui, and other libraries
• Communication
 ▪ TCP/UDP
• Project
 ▪ Visual Studio 2008
System Architecture

- X-Plane Flight Synoptics Data Plug-in
- PFD Flight Data Plug-in
- PFD Terrain Plug-in
- LMD Flight Data Plug-in
- LMD Terrain Plug-in

- Super Synoptics
- Primary Flight Display
- Lateral Map Display

Nodes with TCP and UDP connections, with some connections undecided.

Cross Functionality

TCP
UDP
Undecided
Hardware Setup

![Diagram of hardware setup including a projector for X-Plane, a large screen, a lateral map display, super synoptics, and a primary flight display.]
System Components

• Hardware Platforms
 ▪ Windows 7
 ▪ One or more machines running avionics instruments
 ▪ Machines networked to stream data

• Software Platforms / Technologies
 ▪ X-Plane SDK
 ▪ Visual Studio 2008
 ▪ OpenGL, GLUT, XTools, Boost, nui
Testing

• Lots of research and prototyping
 ▪ When will this functionality be useful?
 ▪ Will this interfere with a display’s existing functionality?
 ▪ Can we make it better?

• Data Display
 ▪ Synchronized with X-Plane, other displays
 ▪ Data displayed is realistic

• Edge-Case Testing
 ▪ Fault-tolerance between displays
Risks

• General avionics knowledge
 ▪ Team members will research field via client suggested information
• Some ideas may have to be killed
 ▪ Not completely avoidable
 ▪ Risk reduced by research, visual prototyping
 ▪ “1000 ways not to make a light bulb”
• Must rely on and utilize previous projects
 ▪ Must heavily debug and optimize code
 ▪ Adding cross functionality will prove difficult
• Networking conflicts within instrumental communication
 ▪ Primary network specialist