MICHIGAN STATE UNIVERSITY Project Plan Presentation Recycling Identification Scanner The Capstone Experience

Team GM-RIS

Matt Miller Jerry Hoskins Safiya Fareed Andres Tamayo Keerthi Ramesh Pedro De Oliveira Mitkiewicz Department of Computer Science and Engineering Michigan State University Fall 2024

From Students... ...to Professionals

Project Sponsor Overview

- General Motors (GM) is a multinational car manufacturer headquartered in Detroit, Michigan
- GM is in the forefront of innovation when it comes to car manufacturing
- GM is moving towards electric vehicle manufacturing in line with their goals of carbon neutrality by 2040, and all renewable energy in its US facilities by 2025

Project Functional Specifications

- It's important to organize plastics by type because they have different properties
- Plastics throughout the facility can't always be identified by sight alone
- Our scanner uses infrared light and measures reflectance and accurately identify plastics
- The system integrates with a mobile app for simple and efficient logging
- Its features align with GM's existing recycling procedures
- The scanner can be retrained as new plastics are introduced with new car models

Project Design Specifications

- Scan plastic with scanner, view plastic type on phone and optionally add an image
- A page for all the plastic data which can be sorted by type and bin
- All plastic data can be exported in multiple formats
- Training mode for admin use, prompting user to respond yes/no when scanning new plastic

Screen Mockup: Home Page

Screen Mockup: Scan Pages

Screen Mockup: Plastic Data

Screen Mockup: Train Mode

Project Technical Specifications

- Arduino Microcontroller: Controls the LEDs, photodiode, and runs the model. Emits data to mobile device
- Near-Infrared Spectroscopy: Emits near-infrared light from 8 LEDs and measures how much is reflected using a photodiode
- Machine Learning Model: Neural network built with PyTorch is trained on spectral data. Outputs probability of each plastic type
- Mobile Application: Built with React Native for iOS and Android, communicates with the scanner to display results
- Data Storage: Results are stored locally using SQLite and synced with a Djangopowered cloud backend
- Wireless Communication: Data is transmitted via Bluetooth or Wi-Fi between the scanner and the mobile app
- Cloud Backend: Manages data storage, model updates, and feedback loops using Django and GM servers

Project System Architecture

Project System Components

- Hardware Platforms
 - Plastic Scanner
 - o Arduino Uno
 - Circuit Board
 - LEDs and Photodiode
 - Mobile Device
- Software Platforms / Technologies
 - Programming Languages
 - o Python
 - JavaScript
 - o SQLite
 - Libraries/Modules
 - o Django
 - React Native
 - o SQLite3
 - o Pytorch
 - Pandas

Project Risks

- Dataset
 - Needs to be large, diverse, and accurate for a good model
 - Open source? Creating it ourselves
- Handling Composite Plastics
 - Some materials can be composed of multiple different types of plastics
 - Treating composites as a different plastic type and including it in the dataset
- Extrapolate To New Plastics
 - The scanner should be scalable and should be able to identify new types of plastics
 - A large and diverse dataset. A manual training mode ("Is this [plastic type]? [Yes/No]")
- On-Device Compute
 - Running a neural network can be expensive
 - Multiple manual testing. Cloud compute if necessary