MICHIGAN STATE UNIVERSITY **Project Plan Presentation Ocean Carbon Pollution Cleanup** The Capstone Experience Team Anthropocene Institute Henry Bock William Chasteen Faith Dawson Cam Koons Nitin Polavarapu **Blake Potvin** Department of Computer Science and Engineering **Michigan State University** Fall 2024

... to Professionals

Project Sponsor Overview

- Ultimate goal of making Earth abundant and sustainable for all generations to come
- Provides funding to upcoming technologies and promotes education about climate breakthroughs
- Want to solve the climate dilemma by 2030 through investing in the right science and technology

Project Functional Specifications

- Design an ocean sensor network configuration for an iron fertilization experiment
- By modeling various proposed buoy layouts and comparing how effective data collection will be
- Create visualizations and graphs of the prospective outcomes to convey potential experimental results

Project Design Specifications

- Home Page
- About Page
 - Background of sponsor and science behind experiment
- Report Page
 - Buoy variance results
 - Interactive map for users to optimize buoy placement
 - Recommendations for physical sensor placements based on simulated network
 - Visualizations and graphs of results

Screen Mockup: Home

The Capstone Experience

Team Anthropocene Institute Project Plan Presentation

Screen Mockup: About

R

Screen Mockup: Suboptimal Report

The Capstone Experience

Team Anthropocene Institute Project Plan Presentation

Screen Mockup: Optimal Report

Project Technical Specifications

- Front End React
 - Front end library for building user interfaces
 - External JavaScript libraries to create visualizations (maps and graphs)
- Backend SQLAlchemy, Python & FastAPI
 - SQLAlchemy is a backend component to connect the database to FastAPI
 - Python to do statistical analysis on data passed into the API and determine buoy variance
 - FastAPI is a framework for building asynchronous web APIs
- Database PostgreSQL
 - Scalable structured data storage (for optimized access)
- Web Hosting GCP & Cloud Run
 - Hosting provided by Anthropocene Institute

Project System Architecture

Project System Components

- Hardware Platforms
 - None
- Software Platforms / Technologies
 - React
 - TailwindCSS
 - Google Cloud Platform
 - PostgreSQL
 - SQLAlchemy
 - FastAPI
 - Docker
 - Chart.js

Project Risks

- Background Knowledge
 - We don't have background knowledge about the scientific processes that we are meant to be modeling
 - Resources from our sponsor, reaching out to MSU oceanography professor, and our own independent research
- Calculating Data Discrepancies
 - Determine mathematical functions to analyze statistical discrepancies among selected buoys in a network
 - Research statistical methods to determine best methodologies to compare sensor data and discuss with scientists from Anthropocene Institute to validate our methodology
- Structuring Data
 - We have yet to receive any data, we don't know what data will be included, but we know it will be unstructured
 - Work with our client to determine key data and use libraries, such as Spacy, to structure data
- Developing Interactive Mapping Software
 - Design grid map with ideal level of interactivity for configuring buoy sensor network
 - Work with software engineer from Anthropocene Institute to develop interactive components that suit our clients specifications

Questions?

