MICHIGAN STATE UNIVERSITY Alpha Presentation Amazon Review Confidence Tool

The Capstone Experience

Amazon

Collin Cole Nikita Gupta Cameron Hurley Ashu Kher Dylan Mccarroll Ethan Strain

Department of Computer Science and Engineering Michigan State University

Fall 2022

From Students... ...to Professionals

Project Overview

- Review Authenticity Tool
 - Predict if an Amazon product review is genuine for sellers & customers alike
 - Visualize confidence score with easy to understand graphics
- Easily Accessible Data
 - Browser extension to display data on-site on Amazon products
 - Web page to provide further information and additional features

System Architecture

Home Page

The Capstone Experience

Product Page

Browser Extension (On Amazon)

Fake Review Generation

load the response into clean variable
result = json.loads(response['Body'].read().decode())

clear our the newline chars from output
generated_reviews = result[0]["generated_text"].split("\n")

for review in generated_reviews:
 print(review)

Great camera quality! I found it quite nice and accurate. If the other review had been the same then I c ould probably have said to myself: there is not a better camera in this price range.

Rated 5 out of 5 by daniel k from Very simple and fast Very simple and fast

Rated 5 out of 5 by DZB from Great price For what it is I bought this camera to look at some vintage fil m. It has a great quality and the sound is clear in quality. I want to give it a shot and to say thank y ou all... for this camera it was a great deal. It was very good price.

Rated 5 out of 5 by JayC from Great deal I am very impressed with the quality and quality of the Canon E OS 35mm f/1.2 E DSLR. You can also use it for the Sony STIF. I have a 35mm f/1.2 from the Sony STIF but no 50mm f/1.1 E lens. This camera is also better than other high end lenses which I own. I would buy aga in for that to work and use for other things or have it back.

What's Left: Current Status

What's Left: Beta

What's Left: Deliverable

Questions?

End of slide show, click to exit.

ML Preprocessing Explained

- SkLearn.CountVectorizer(analyzer)
 - Tokenize text features
 - Analyzer picks out <u>stopwords</u>, punctuation, etc
- Term Frequency Inverse Document Frequency
 - Word "Originality"
 - Tf: times word t appears in doc d
 - Idf: # of docs word appears in

Scikit-Learn

•
$$IDF(t) = log \frac{1+n}{1+df(t)} + 1$$

Standard notation

•
$$IDF(t) = \log \frac{n}{df(t)}$$

In implementation, must account for divide-by-zero errors