MICHIGAN STATE UNIVERSITY **Project Plan Using Sensors to Study Human Behavior** The Capstone Experience Team Michigan State University CSE **Rainier Devolder** Merryn Marderosian **Ben Seeger** Lianghao Shu **Taylor Whitacre** Department of Computer Science and Engineering Michigan State University

From Students... ...to Professionals

Spring 2020

Functional Specifications

- Sensor data will be streamed to a server and displayed in a convenient web platform for researchers to analyze
- Data can be viewed in both real-time and from archives
- Trigger actions can be defined to alert researchers whenever sensor data reaches a specified threshold

Design Specifications

- Home Page
 - Displays a collapsible menu to allow users to navigate to other parts of the website
- Live Feed
 - Displays real-time visual, audio and temperature data
 - Displays trigger settings
 - Displays an event log of past trigger events with the ability to filter based on a selected sensor medium
 - Displays sensor controls to turn sensors on and off
- Trigger Alert
 - A pop-up window is displayed to alert researchers when a trigger event has occurred
- Archive
 - Displays recorded video, audio and temperature data from a selected session

Screen Mockup: Home Page

Team Michigan State University CSE Project Plan Presentation

Screen Mockup: Live Feed

Team Michigan State University CSE Project Plan Presentation

Screen Mockup: Trigger Alert

Screen Mockup: Archives

Technical Specifications

- Data Collecting and Streaming
 - Raspberry Pi will collect data through connected sensors and stream data to a Data Ingestion and Analysis Engine
- Data Storage and Analysis
 - A Java engine on a server will manage data streams and provide a framework for analysis
- Data Viewing and Interaction
 - A web application will be used for visualizing sensor data, sensor controls, trigger settings and viewing an archive of previous recordings

System Architecture

System Components

- Hardware Platforms
 - Raspberry Pi
 - Sensors: Samson Go Mic USB Microphone, Arducam Stereo USB Camera, Raspberry Pi Camera V2 and Sense HAT
- Software Platforms / Technologies
 - Java
 - Flask Web Framework with Python 3.6
 - Ubuntu 18.04 and Nginx
 - MySQL
 - Raspbian Lite

Risks

- Risk 1
 - Handling mass amounts of raw sensor data will take up a large amount of RAM and Disk space on the production server
 - Mitigation: Upgrade the production server RAM and disk space
- Risk 2
 - Concurrent reads and writes to and from the database will likely occur and may cause errors
 - Mitigation: Research and designing the web application to minimize read and write conflicts
- Risk 3
 - Compatibility issues when connecting third party hardware to our developed computational infrastructure
 - Mitigation: Create the Data Ingestion Engine to be as general as possible to facilitate the connection of various third party sensors
- Risk 4
 - Multiple data streams will need to be handled concurrently on the server
 - Mitigation: The Data Ingestion Engine will need to implement multithreading
- Risk 5
 - Collecting data from sensors connected to a Raspberry Pi and streaming the data to a server has not been done by anyone in our team prior to this project
 - Mitigation: Select sensors that have open source examples of streaming data from a Raspberry Pi to a server

Questions?

Team Michigan State University CSE Project Plan Presentation