MICHIGAN STATE UNIVERSITY Project Plan: Project Rumble

The Capstone Experience

Team Vectorform

George Schober Danny Marshall Tyler Lovell Charles McIntire

Department of Computer Science and Engineering Michigan State University Fall 2019

From Students... ...to Professionals

Functional Specifications

- Goal is to use an accelerometer-equipped device to determine whether a washing machine is on or off.
- On/off determinations must be accurate regardless of placement of device or brand of washer.
- Longer-term aims of Project Rumble are to be able to observe different parts of wash cycles on a finer-grain timescale and determine whether any washer issues were detected.
- If the process is easily replicable, Vectorform hopes to expand support to other high-vibration appliances, such as driers and dishwashers.

Design Specifications

• ESP32 Feather will...

- Record data from connected accelerometer to connected SD card reader
- Use trained neural net to predict whether washer is on or off
- Push data, prediction, and device MAC address to server using MQTT

Server will host...

- A MySQL database storing the data for every device
- A web app that will allow the user to select a MAC address from a list and view the current/historical accelerometer data and predictions for the device associated with the selected address

List of Devices

Device Details Example 1

The Capstone Experience

Device Details Example 2

The Capstone Experience

Device Details Example 3

The Capstone Experience

Technical Specifications

- Server-side
 - Rackmount server running a MySQL database
 - Receives data from ESP32 via MQTT
- Equipment
 - Adafruit ESP32 feather with accelerometer and SD card reader/writer attached.
- Software
 - Microsoft Visual Studio C++ to write the neural net
 - Arduino IDE for programming and flashing the ESP32
 - React.js
 - Victory
- Neural Net
 - Multilayer Perceptron neural net with a single hidden layer
 - Uses gradient descent and backpropagation to optimize the network
- Front End Web App
 - Uses JavaScript library React.js and incorporates HTML models and CSS descriptions.

System Architecture

System Components

Hardware Platforms

- Adafruit HUZZAH32 ESP32 Feather
- Adafruit Adalogger FeatherWing
- Adafruit ADXL343 + ADT7410 Sensor FeatherWing
- Software Platforms / Technologies
 - Ubuntu Server 18.04
 - MySQL Server
 - Python 3.6 / MySQL-Connector/Python
 - MQTT
 - Arduino IDE
 - JavaScript / React.js / Victory React
 - PHP / HTML
 - Visual Studio C++

Risks

- ESP32 Capacity
 - Currently uncertain whether the 4MB onboard flash memory on the ESP32 is large enough to hold a pre-trained neural net.
 - If 4MB is too little storage space, we will have to consider doing signal processing without the use
 of machine learning, using quick/efficient algorithms to determine when a washer is running.
- Accelerometer Corrections
 - Will need to develop a strategy to correct the raw accelerometer readings for both gravitational acceleration and drift over time.
 - possible mitigation would be to record the 'base' accelerometer readings any time the washer is confirmed to be off
- Accessing Server Data
 - Server containing both raw data and the MySQL database currently resides on a rackmount that's within MSU's private subnet. We will need to have a way to make server data available off campus
 - Either host the server through an external VSP provider, or have Vectorform employees access a system within the MSU subnet using a trusted VNC application
- Sufficient Training Data
 - Uncertain if there's enough accelerometer data to train a neural network to accurately determine whether a washer is running a cycle or off.
 - Obtain more/longer datasets from sensors set up on real washing machines (we will have received approximately double the data we currently have from Vectorform by September 30)

Questions?

