MICHIGAN STATE UNIVERSITY

Project Plan Lateral Map Display

Team GE Aviation CSE 498, Collaborative Design

Adam Dupler Corey Sites Jason Rigdon Jordan Clare

Department of Computer Science and Engineering Michigan State University

Spring 2010

Project Overview

- Lateral Map Display
 - Top down view of aircraft's position
 - Aids in navigation
 - Multiple layers that can be toggled on/off
- Control Panel
 - Buttons to change active layer(s)
 - Insert/delete waypoints
 - Dials to change map mode, zoom in/out
 - Utilize controls in X-Plane to update external control panel

Functional Specifications

Lateral Map Display

- Display information pertaining to aircraft's situation
- Show possible risks including air traffic, hazardous terrain, and inclement weather
- Control Panel
 - Include buttons for weather, traffic, waypoints, airports, VORs, terrain, etc.
- Optional Extended Functionality
 - Display horizontal view of surrounding terrain (Vertical Situation Display)
 - 3D tilting view to see terrain elevations

Design Specifications

- Terrain data transmitted over network and rendered using C and OpenGL
- Lateral Map Display created using OpenGL and GLUT in Visual Studio
- Flight data sent over network using separate plug-in
- Rendering component receives flight data and displays icons as 2D overlays

Screen Mockups

Team GE Aviation

Technical Specifications

Main Machine:

- Runs X-Plane and plug-ins, sends flight and terrain data over network
- DSF parser converts terrain data to be rendered by the client
- Secondary Machine:
 - Runs rendering component, receives data from X-Plane
 - Displays Synthetic Vision Display, Lateral Map Display, Control Panel, and Vertical Situation Display

Architecture Illustrated

System Components

Hardware Platforms

- One machine running X-Plane and custom installed plugins
- One machine running client rendering program
- Machines networked to stream data
- Software Platforms / Technologies
 - X-Plane
 - Realistic flight simulator to be used as data source to drive the Lateral Map Display
 - Visual Studio, GL Studio
 - OpenGL, GLUT

Testing

- Data Output
 - Plug-ins will be tested to ensure that data being exported is correct
- Data Parsing
 - Make sure that data read by rendering software is equivalent to data in X-Plane
- Data Display
 - Ensure that data displayed in Lateral Map Display is consistent with that shown in X-Plane monitors
- Code
 - Avoid memory leaks and inefficiencies

Risks

- Maximize compatibility with previous code
 - Port code to ANSI C, add features to flight data plug-in
- Performance
 - Utilize POSIX threads to avoid lag in X-Plane
- Weather data
 - Determine where to obtain up-to-date weather data that can be displayed in a radar map