

Technical Specification / Schedule IBM POWER Hypervisor hcall Test Suite

Team #4: IBM CSE 498, Collaborative Design

Scott Judd Jordan Fish Joshua Roys

Department of Computer Science and Engineering
Michigan State University

Spring 08

Project Overview

- Hypervisor A layer of code always memory resident in PPC Machines
- Mediates hardware access through hcalls
- Hcall => Hypervisor as syscall => OS kernel
- Hypervisor Layer allows multiple OS images (partitions) to share a single physical system
- Assertion no partition can effect another
- Our goal is to design an intelligent way to test the Hypervisor for cases in which a partition effects another or causes system failure

Functional Specifications

- Make Hypervisor Calls
- Retrieve Results
- Break tests in to modules
- Modules to test all hcalls (~100)
- Graphical reports of results
- Report of how thorough the tests are

System Components

- Hardware Platforms
 - Linux Server at IBM (Testing Platform)
 - Linux HMC Machine at IBM (Creates Partitions)
 - AIX Machine at IBM (TestHarness)
 - Linux Machine at MSU (Programming Platform)
- Software Platforms / Technologies
 - Hypervisor Layer
 - TestHarness (composed of Perl Scripts)
 - Graphical User Interface (written in Java)

Use Case Flowchart

This is all the user does
Everything afterwards is automated
(Continued on Next Slide)

Use Case Flowchart

This is all the user does Everything afterwards is automated

Architecture Illustrated (Hcalls made from a partition)

- The Test Harness executes hcall.pl remotely in the partition
- hcall.pl writes to the /proc File System
- The Kernel Module makes the hcall stored in /proc and places the results back in the file system.
- hcall.pl returns the result to the Test Harness

Feam #4: IBM

Architecture Illustrated (Test Harness Design)

Team #4: IBM

Architecture Illustrated (How the Hardware Connects)

Architecture Illustrated (GUI) [Signature] [Continued of the continued o

11

Architecture Illustrated (GUI)

Team #4: IBM

Standard Out Standard E	т	
[Fri Jan 25 18:49:50 EST 2008]: Unable to access jarfile randomoutput.jar		

Risks

- Perl
 - Test Suite Written in Perl
 - Learn Perl
- IBM
 - Long distance and slow response times
 - A lot of contact with firm and concise times
- Hypervisor Technology
 - Hypervisor only runs on PPC systems
 - Use an IBM server
- Developing Pseudo-Random Test Cases
 - Can not test all possible hcall parameters
 - Produce a set of logical tests cases

January 23:

- Test Module Prototype Compete
- January 28:
 - First Prototype Test Module Written
- January 30:
 - First Prototype Test Module Working as Intended
- February 1:
 - Hcall Modules Complete
- .February 4:
 - Extending Autoharness Partition Failure Detection Begins
- .February 6:
 - . All Modules Framed

- .February 8:
- One Working Alpha Module Completed Apiece
 February 11:
- Alpha GUI Producing Meaningful Output
 February 13:
 - . Half of all Test Modules Complete
- .February 15:
 - Alpha Presentation Complete
- .February 15:
 - Autoharness Partition Failure Detection Complete

.February 18:

Alpha Presentation

February 20:

All Test Modules Working for Random Input

February 27:

 Pseudo Random Test Case Development Begins

February 29:

 Narrow Down Pseudo Random Heuristic to Three Candiates

.March 3:

 Miscellaneous Modules Implemented with Pseudo Random Heuristic

Project Schedule

.March 3-7:

Project Report Preparation

.March 5:

GUI Report Generation Begins

.March 7:

· Pass/Fail Report Complete

.March 10:

Project Report Due

.March 10:

 Working Pseudo Random Heuristic Implementation

.March 12:

Partition Failure Report Complete

.March 15:

Finalized Pseudo Random Heuristic

.March 17:

 Beta Presentation of GUI Frontend with Report Generation Complete

.March 21:

Coverage Report Generation Complete

.March 24:

 Test Modules Moved to Pseudo Random Heuristic Phase 1

.March 26:

 Test Modules Moved to Pseudo Random Heuristic Phase 2

.March 28:

 Test Modules Moved to Pseudo Random Heuristic Phase 3

.March 31:

 Pseudo Random Heuristic Implementation Complete

.April 4:

Release Candidate Complete

.April 7:

Final Presentation Design Begins

.April 7-13:

Project Report Preparation

Project Schedule

- •April 14:
 - Project Report Due
- ·April 16:
 - Video Finished
- .April 16:
 - Design Day Preparation Begins
- .April 21:
 - Project Video Due
- .April 21-23:
 - Design Day Rehearsals
- .April 24:
 - Design Day