

Michigan State University

Microsoft Intune Company Portal Helper Bot

Project Plan

Spring 2017

 Microsoft Staff:

 Kurt Seippel

 Team:

Lefan Zhang

Nicholas Bunton

Ramon Niebla

David Saksa

Anh Nguyen

Team Microsoft

Project Plan Document

2

Table of Contents

1. Executive Summary ………………………………………………………….3

2. Functional Specifications …………………………………………………….4

3. Design Specifications ……………………………………………………….6

 3.1 Overview

 3.2 User Interface

 3.3 Process Flow

4. Technical Specifications ……………………………………………………..12

5. Risk Analysis …………………………………………………………………..15

6. Schedule …………………………………………………………………………..17

Team Microsoft

Project Plan Document

3

1. Executive Summary

Since 1975, Microsoft has become a prominent leader of innovative software, hardware,

and services. Its headquarters in Redmond, WA and satellite offices all over the world

thrive on the idea of productivity and the empowerment of businesses and individuals

to achieve more.

Microsoft Intune is a cloud-based enterprise mobility management service that aims to

help workforces manage their mobile devices. With the Intune service, clients are able to

control which devices are able to access company data, manage the applications

installed on the devices, and make sure that the devices are compliant to company

security requirements.

Intune’s client base is growing at a rapid pace. The Company Portal app allows clients to

access their Intune account and manage their devices on-the-go. The company portal

android team actively receives bug reports from users without much information about

what they are experiencing. These experiences can vary from application crashes to not

knowing how to use a specific feature of the application. This leads to unorganized and

cluttered data that can be avoided if the user was presented with appropriate

documentation on the issue, or a way to report detailed bugs to Microsoft engineers.

A solution to fix these issues would be to implement a helper chat bot that could

understand if the user is trying to get support for the Intune service or if they are trying

to report a bug or give feedback.

Team Microsoft

Project Plan Document

4

2. Functional Specifications

The Intune Company Portal Helper Bot is an advanced natural language bot capable of

diagnosing, reporting, and resolving problems customers are having with the Company

Portal experience. Many Company Portal and Intune customers are experiencing

problems with the application and are unable to resolve their problems. It’s difficult and

time consuming for the customer to search for help via Google or the Documentation.

In addition, searching via search engines proves to include many unrelated answers. The

current bug reporting system is also a key problem. To submit a bug, the user clicks a

button which will email the Microsoft team with log files. The log files are long,

complicated files which include tons of noise making them quite useless in many cases.

It does not have any more information about the bug or have any information about

how to reproduce the bug. These are our two main problems.

Our primary goal is to create a bot capable of resolving problems without the need for

human interaction. The first step is to create an intelligent bot capable of finding,

linking, and distributing relevant articles and links to the user when they ask a question.

This is done via a messaging application on a mobile device. When a user asks a

question, the bot will do several things. First, it will query API.AI to parse out keywords

from the question. Then, the bot takes these keywords and queries the GitHub Search

API on the Intune Documentations to look for articles relating to the issue. Finally, the

bot will check the response and send back articles it received. The bot gains knowledge

on previous experiences to provide even more accurate results for future users. In

addition to linking users to relevant articles, another main goal is to provide a better

bug reporting experience. As stated above, current bug reports consist primarily of log

files which do not help the user nor the Microsoft team. Our team plans on

implementing a new system to report troublesome bugs back to the Microsoft team.

The new process would simply be integrated into the chat bot. Whenever the bot is

unable to find relevant or helpful articles the user can send a bug report instead. The

bot will ask questions relating to how they experienced the bug, how to reproduce the

Team Microsoft

Project Plan Document

5

bug, as well as being able to attach relevant screenshots to demonstrate the problem

the user is having.

The third goal of our project is to make the bot more intelligent over time. To do this,

the bot will need a sophisticated knowledge bank capable of teaching itself to predict

the user’s intentions as well as learn from past experiences. In the early life of the bot,

the bot has a difficult time predicting which articles are most helpful to a user. As time

goes on, the model will continually update itself in a variety of ways. First, as Microsoft

adds more articles and documentation to help users, the bot will be able to use these

articles to provide more accurate results. The bot is constantly keeping track of how

often certain links appear, how often they are clicked, and how frequently a specific

question is asked. Using a combination of this information, the bot will be able to

provide more accurate results for future users. In addition, during the conversation the

bot will ask questions relating to the articles. Based on this feedback the bot will update

its article bank and knowledge model to provide better results for future users.

The bot will first be available for Android. The Android app is the primary goal of the

project and will be the main focus for the project. Once the Android app is functioning

completely, the iOS app will also be built. Because the bot must work for multiple

platforms, it is important for the team to build an extensible app.

Team Microsoft

Project Plan Document

6

3. Design Specification

3.1 Overview

The Intune Company Portal Helper bot is designed for the user to interact and talk to

the bot in a question-answer manner. Therefore, the user interface allows the user to

input messages and expect the bot to return a sophisticated and programmed response.

Like most messaging applications, users are able to see message history until they end

the session. When the bot responds with a link that it thinks might be helpful to users,

users are then able to click on the provided link to open it in their default web browser

application.

3.2 User Interface

Since the Intune Company Portal Helper bot is an add-on feature to Microsoft’s Intune,

its user interface is kept as simple and functional for a messaging application as

possible.

Team Microsoft

Project Plan Document

7

The above mockups demonstrate a basic user flow where users open the Intune

Company Portal Helper Bot application and ask a question of how to enroll a user on

Android platform. In return, the bot programmatically searches and responds with a link

it thinks is helpful. Users can then click on the link to have it open in WebView client

supported by Android as demonstrated in figure 2.

In the case where the bot is unable to retrieve a helpful answer, it continues to ask if

users could provide more details. If users agree to proceed seeking for help, they can do

so by rephrasing the previous question. The bot then attempts to find a sophisticated

answer to return to users. Figure 3 depicts this scenario.

Figure 1: Bot responds with relevant

link to appropriate support article

Figure 2: WebView that is displayed

when user clicks on link

Team Microsoft

Project Plan Document

8

Figure 3. Bot reattempts to find an answer.

Team Microsoft

Project Plan Document

9

When the bot fails to retrieve an answer the first time, it asks the users if they want to

try again. If users deny, they are asked whether they would like to file a bug report.

Users can continue to converse with the bot by giving more details on the issue, so the

bot can store the transcript to send to Microsoft engineers, as shown in Figure 4 and 5.

 Figure 4. Bot asks for bug report. Figure 5. User gives feedback.

After receiving feedback from user, the bot then proceeds to send the entire

conversation to Microsoft’s engineering for inspection and provide further details on

how to go about fixing the reported issue to client.

Team Microsoft

Project Plan Document

10

3.3 Process Flow

Team Microsoft

Project Plan Document

11

4. Technical Specifications

System Architecture

For the system architecture, our bot will be hosted in Microsoft Azure Bot Services. A

Microsoft Intune user will be able to communicate using the Microsoft Intune Company

Portal app. When the user sends a message to the bot, the message will be sent to the

API.ai model to figure out the intent of the user’s message. Once an intent has been

classified for the message, then the model will parse out keywords in the message to

figure out proper articles to send to the users using the GitHub search API. The article

URL’s will be returned to the bot, where the bot will be able to provide the article links

to the Intune user to help figure out their issue. The SQL database hosted in Microsoft

Azure will keep track of which articles are returned from the certain keywords of a user’s

message. The bot will prompt the user to see if the article they viewed was helpful or

not and will keep track of that in the database in order to present the help articles in the

order of being the most relevant related to the user’s issue.

Team Microsoft

Project Plan Document

12

There are two other cases that could occur in the Company Portal user and bot

conversation. If the user sends a greeting message, such as “Hello, I’m having a

problem.”, the bot will begin to prompt the user to figure out the specifics of the

problem so it can attempt to figure out an intent.

The last case would be when none of the provided articles helped the user figure out a

solution to their problem. In this case, the bot will create a transcript of the whole

conversation and send a bug report to Microsoft Intune engineers so they can begin to

debug the issue.

Mobile Applications

Our Android and iOS applications will allow Microsoft Intune users to have a

conversation with the bot. The application will be able to communicate with the bot via

Direct Line API (https://docs.botframework.com/en-us/restapi/directline/). This API

allows the bot to execute HTTP GET and POST requests. The application will receive and

send data as a JSON object.

Microsoft Intune users will be able to send text messages and also attach files to their

messages. The file attachments (such as images) will be beneficial to the Microsoft

Intune engineers as it will make it easier to understand what type of bug is occurring.

API

Our bot will be using three API’s. The first one will be the GitHub Search API. This will

retrieve Microsoft Intune documentation based upon search terms that is received from

a user. Once retrieved, the bot will then be able to link users to appropriate articles.

The second API used is the Direct Line API. This API will connect the bot to the mobile

application. Once the bot is connected, it will be able to receive messages from Intune

users and send messages back to them, to help them figure out any potential issues

they are having.

The last API we are using is our natural language processing model called API.ai. When a

user sends a message in the mobile application, our bot will send the message to the

Team Microsoft

Project Plan Document

13

API.ai model which will figure out the intent of the message. If the message has been

classified as a general question (the user is trying to figure out how to do something on

Intune), then our bot will proceed to use the GitHub Search API to gather articles to

send back to the user. If the user’s message has not been classified as a general

question, then our model will generate an appropriate message to send back to the

user.

Microsoft Azure

The bot will be hosted in Microsoft Azure using Azure Bot Services. The Direct Line API allows

our Android application to communicate with a bot in Azure Bot Services which will allow the

application to carry out a real time conversation with the bot.

Also, the bot will be using a Azure SQL Database. The database will be used to be able to make

the bot smarter. The bot will keep track of which articles are clicked on by the user in the mobile

application. Once a user views an article, the bot will prompt the user to see if the article was

helpful or not. This type of information will help the bot learn which articles are helpful and

which ones are not.

Also, the SQL database will allow Microsoft database administrators to enter in any possible new

bugs that have just been discovered in the Company Portal app. If an Intune user sends a

message that resulted in zero help articles being returned, then the bot will search the SQL

database to see if the user’s message relates to any new bugs that have been discovered. If that

is the case, the bot will let the user know that their issue is currently being resolved by Microsoft

engineers and would prompt the user to send a bug report to the Microsoft Intune team.

Software Technologies

1. Microsoft Bot Framework (C#)

2. Api.ai

3. Android (Java)

4. Direct Line API (Java)

5. Microsoft Azure

6. GitHub Search API

7. iOS (Swift)

Team Microsoft

Project Plan Document

14

Development Environments

The bot will be created in Visual Studio using the Microsoft Bot Framework, written in

C#. The APi.ai model will be used to create intents for the bot to recognize and then test

the bot using the Microsoft Bot Framework Emulator. Once the bot is successfully tested

on the Emulator, the bot will be moved to Microsoft Azure to be able to be used with

the mobile applications.

The Android application will be created in Android Studio. In order to connect the

Android app with the bot, the Direct Line API will allow users to have conversations with

the bot in the application. The iOS application will be developed in Xcode and will also

be using the Direct Line API to allow conversations.

Test Plan

The bot will be tested locally using the Microsoft Bot Emulator, in which our bot will be

tested on how it responds to certain messages. The Android application will be tested

by running the app in Android Studio, and the iOS application will be tested locally on

Xcode. Once a prototype is developed for the bot, the Microsoft Android Company

Portal team will provide real life scenario testing. The testing team will ask the bot

frequently asked questions and report test bugs and then the team will receive and

analyze that data to see if there are ways to improve the user experience.

Team Microsoft

Project Plan Document

15

5. Risk Analysis

Microsoft Bot Framework

Difficulty: Easy

Description: The framework that the team will be using to develop a natural

language processing bot. None of the team members have worked with the bot

framework before. This bot framework is essential for the project.

Mitigation: Review the documentation of the Microsoft Bot Framework, as well

as going over various tutorials of how to use the framework.

REST API with Microsoft Azure Bot Services

 Difficulty: Moderate

Description: Android mobile application will use REST APIs to send messages to

the bot from the Intune Company Portal user and vice versa. The format of the

messages will be a JSON object and will need to be formatted to fit into the

Android application chat interface. The bot should be able to handle multiple

types of data and information.

Mitigation: Review Azure Bot Services documentation and go over tutorials.

Experiment with the Azure IDE available through the Azure website.

API.ai

 Difficulty: Moderate

Description: Advanced natural language processing model, which has the ability

to determine the intent(s) of a conversation. API.ai will parse out certain keywords

in a message that will make searching for appropriate articles more efficient.

Mitigation: Go through tutorials and documentation. Create automatic models

to optimize the fluidity of the conversation between the user and bot.

Team Microsoft

Project Plan Document

16

Android Development

 Difficulty: Moderate/Hard

Description: The team must develop an Android application that allows a

Microsoft Intune user to have a conversation with the developed bot. Since the

team has little experience with Android this will be a challenge.

Mitigation: Reviewing documentation and going over tutorials.

iOS Development

 Difficulty: Moderate/Hard

Description: Along with the Android application, the team has to develop an iOS

application. With almost no experience in iOS development, this will be difficult

to mitigate.

Mitigation: Reviewing documentation and going over tutorials.

Team Microsoft

Project Plan Document

17

6. Schedule

Stages

● Week 1: 01/16 - 01/22

1. Review documentation and tutorials

2. Get familiar with all software we are going to use

3. Team Assignment

● Week 2: 01/23 - 01/29

1. Set up meeting schedules

2. Build screen mock up

3. Process flow

4. Project Design Document

● Week 3: 01/30 - 02/05

1. Build Basic UI

2. Research various searching methods

3. Bot transcript for conversation uploading to a text file

4. Let bot framework interact with LUIS

● Week 4: 02/06 - 02/12

1. API to link back to the framework

2. Implement a basic search engine

3. Conservation storage and what data do we store

4. Build up LUIS models

● Week 5: 02/13 - 02/19

1. Chat interface setting on Android

2. Come up with a score threshold for the search engine

3. Make alpha presentation PowerPoint

4. Practice alpha presentation

● Week 6: 02/20 - 02/26

1. Pop open Chrome browser setting

2. Get article bank up and running

3. Figure out how to get attachment into the email

4. Figure out intent and entities in LUIS model

● Week 7: 02/27 - 03/05

1. Design Bot Icon

Team Microsoft

Project Plan Document

18

2. Compare and store results from previous requests

3. Link intentions from LUIS as independent functions

4. JSON Parsing (make this on C# and upload to LUIS)

● Week 8: 03/06 - 03/12

1. Store the conversation on the device temporarily for retrieval

2. Compare and store results from previous requests

3. Send bot information to Android using API

4. Discuss what type of intents

● Week 9: 03/13 - 03/19

1. Instructional tutorial for taking and storing screenshots

2. Make Bot smarter based on search

3. JSON "cheat sheet" based on intentions from LUIS

● Week 10: 03/20 - 03/26

1. Research on annotations on images

2. Make bot smarter based on search

3. Get familiar with Azure

● Week 11: 03/27 - 04/02

1. Refresh button/reset the connection

2. Make Beta presentation PowerPoint

3. Practice for the Beta presentation

● Week 12: 04/03 - 04/09

1. Refresh button/reset the connection

2. Make bot smarter based on search

3. Put bot in the cloud

● Week 13: 04/10 - 04/16

1. Practice for status report

2. Start working on the project video

3. Make bot smarter based on search

4. Build IOS UI

5. Chat interface setting on IOS

● Week 14: 04/17 - 04/23

1. Store the conversation on the device temporarily for retrieval on iOS

2. Working on project video

3. Instructional tutorial for taking and storing screenshots on iOS

● Week 15: 04/24 - 04/30

Team Microsoft

Project Plan Document

19

1. Working on project video

2. Refresh button/reset the connection on iOS

3. Design day

● Week 16: 05/01 - 05/07

1. Finish project video

2. Complete the application on Android and iOS

